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Abstract
We propose the integrable (pseudo)spherical generalization of the four-
dimensional anisotropic oscillator with additional nonlinear potential.
Performing its Kustaanheimo–Stiefel transformation we then obtain the
pseudospherical generalization of the MICZ-Kepler system with linear and
cos θ potential terms. We also present the generalization of the parabolic
coordinates, in which this system admits the separation of variables. Finally,
we get the spherical analog of the presented MICZ-Kepler-like system.

PACS numbers: 02.30.Ik, 14.80.Hv, 03.65.−w

1. Introduction

The oscillator and Kepler systems are the best-known examples of mechanical systems with
hidden symmetries [1]. Due to the existence of hidden symmetry these systems admit
separation of variables into few coordinate systems. Despite their qualitative difference,
they can be related to each other in some cases. Namely, the (p + 1)-dimensional Kepler
system can be obtained by the appropriate reduction procedures from the 2p-dimensional
oscillator for p = 1, 2, 4 (for the review see, e.g., [2]). These procedures, which are known
as Levi-Civita (or Bohlin) [3], Kustaanheimo–Stiefel [4] and Hurwitz [5] transformations
imply the reduction of the oscillator by the action of Z2, U(1), SU(2) groups, respectively,
and yield, in general case, the Kepler-like systems with monopoles [6–8]. The second system
(with U(1) (Dirac) monopole) is best known and most important among them. It was invented
independently by Zwanziger and by McIntosh and Cisneros [9], and presently is referred to
as the MICZ-Kepler system.

There are a few deformations of oscillator and Kepler systems, which preserve part of
hidden symmetries, e.g. the anisotropic oscillator, the Kepler system with additional linear
potential, the two-center Kepler system [1], as well as their ‘MICZ-extensions’ [10]. The
Kepler system with a linear potential is of special importance due to its relevance to the Stark
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effect. One can observe that the four-dimensional oscillator and with an additional anisotropic
term

UA = �ω2

2

∑
α=1,2

(
x2

α − x2
α+2

)
(1)

results in the (MICZ-)Kepler system with the potential

Vcos = �ω2

4
cos θ = �ω2

4

x3

|x| , (2)

which is the textbook example of the deformed Kepler system admitting the separation of
variables into parabolic coordinates. While the (three-dimensional) Kepler system with an
additional linear potential (which is also separable in parabolic coordinates) is originated in
the (four-dimensional) oscillator system with the fourth-order anisotropic potential term

Unlin = −2εel

∑
α=1,2

(
x4

α − x4
α+2

)
. (3)

The corresponding potentials in other dimensions look similarly.
Oscillator and Kepler systems admit the generalizations on a d-dimensional sphere and

a two-sheet hyperboloid (pseudosphere). They are defined, respectively, by the following
potentials [12, 13],

Uosc = ω2R2
0

2

x2

x2
0

, VKepler = − γ

R0

x0

|x| , (4)

where x, x0 are the Cartesian coordinates of the ambient (pseudo)Euclidean space R
d+1(Rd.1):

εx2 + x2
0 = R2

0, ε = ±1. The ε = +1 corresponds to the sphere and ε = −1 to the
pseudosphere. These systems also possess nonlinear hidden symmetries providing them with
the properties similar to those of conventional oscillator and Kepler systems. Various aspects
of these systems were investigated in [14]. Let us note and also mention [15], where the
integrability of the spherical two-center Kepler system was proved.

Completely similar to the planar case one can relate the oscillator and MICZ-Kepler
systems on pseudospheres (two-sheet hyperboloids). In the case of the sphere, the relation
between these systems is slightly different. The oscillator on the sphere results in the oscillator
on the hyperboloid [16]. After appropriate ‘Wick rotation’ (compare with [17]) of the MICZ-
Kepler system on the hyperboloid one can obtain the MICZ-Kepler system on the sphere,
constructed in [18].

As far as we know, the integrable (pseudo)spherical analogs of the anisotropic oscillator
and the oscillator with the nonlinear potential (3) were unknown up to now, as well as the
(pseudo)spherical analog of the (MICZ-)Kepler system with linear and cos θ potential terms.
The construction of these (pseudo)spherical systems is not only of academic interest, but they
could also be useful for the study of the various physical phenomena in nanostructures, as
well as in the early universe. For example, the spherical generalization of the anisotropic
oscillator potential can be used as the confining potential restricting the motion of particles to
the asymmetric segments of the thin (pseudo)spherical films. While with the (pseudo)spherical
generalization of the linear potential at hands one can study the impact of the curvature of
space on the Stark effect.

The construction of these systems is the goal of the present paper. We shall present
the integrable (pseudo)spherical analog of the four-dimensional oscillator with the additional
anisotropic potentials (1) and (3), given, respectively, by the expressions

�ω2

2
xσ3x̄ (5)
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and

εelR
2
0

(
R2

0 + x2
0

)
x4

0

(xx̄)(xσ3x̄). (6)

Here x = xα + ıxα+2, α = 1, 2, are the Cartesian coordinates of the ambient (pseudo)Euclidean
space εxx̄ + x2

0 = R2
0 and σ3 = diag(1,−1).

Then, performing the Kustaanheimo–Steffel transformation, we get the integrable Kepler
system on the pseudosphere with additional potential terms generalizing linear and cos θ

potentials of the ordinary (MICZ-)Kepler system.
These potentials can be written as follows:

εel
x0

R0
x3 +

�ω2

2

(
x3

|x| ± x0x3

R2
0

)
. (7)

The upper sign corresponds to the potential reduced from the four-dimensional sphere, and
the lower sign corresponds to that reduced from the pseudosphere. We also present the
generalization of parabolic coordinates, where the resulting system admits separation of
variables. Finally, performing the ‘Wick rotation’ of the latter system we will obtain the
spherical analog of the MICZ-Kepler system with linear and cos θ potentials: in terms of the
ambient space these potentials are defined by the same expressions as the pseudospherical
ones (7).

2. Euclidean systems

Let us start from the consideration of the Euclidean analog of our construction. Namely, let us
present the integrable four-dimensional anisotropic inharmonic oscillator, and performing the
Kustaanheimo–Stiefel transformation, reduce it to the MICZ-Kepler system with linear and
cos θ potentials. It is convenient to describe the initial four-dimensional system in complex
coordinates

zα = xα
1 + ıxα

2√
2

, πα = p1|α − ıp2|α√
2

, α = 1, 2 (8)

so that the non-zero Poisson brackets between phase-space coordinates look as follows:

{πα, zβ} = δβ
α , {π̄α, z̄β} = δβ

α , α, β = 1, 2. (9)

In these coordinates the Hamiltonian of the isotropic oscillator reads

H0 = ππ̄ + ω2zz̄. (10)

Its rotational symmetry generators are defined by the expressions

J = ı

2
(πz − z̄π̄ ), (11)

J = ı

2
(πσz − z̄σπ̄), (12)

Jαβ = 1

2
παz̄β, Jᾱβ̄ = 1

2
π̄αzβ, (13)

and the hidden symmetry generators read

A = 1
2 (πσπ̄ + ω2z̄σz), (14)

Aαβ = 1
2 (παπβ + ω2z̄αz̄β), Aᾱβ̄ = Aβα. (15)

Here σ = (σ1, σ2, σ3) are Pauli σ -matrices.

3
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Let us note that the whole set of constants of motion: (11)–(15) form the algebra su(4);
generators (12), (13) form the algebra so(4) and generator (12) forms the so(3) algebra. For
our consideration it is important that generator (11) commutes with (12) and (14) generators
only, and these generators form the algebra so(4). Hence, reducing the four-dimensional
oscillator by the action of generator (11) we shall get the three-dimensional system with so(4)

symmetry algebra.
Let us write the anisotropic inharmonic deformation of the four-dimensional oscillator

system given by the Hamiltonian

Haosc = H0 + (�ω2 + 2εelzz̄)zσ3z̄. (16)

It has the constants of motion given by (11), the third component of (12) and the hidden
symmetry generator

A = A3 +
�ω2

2
(zz̄) +

εel

2
((zz̄)2 + (zσ3z̄)

2). (17)

It is easy to see that all these constants of motion commute with each other, {J, J3} = {J,A} =
{J3, JA} = {J, J3} = 0, i.e. Hamiltonian (16) defines the classically integrable system.

Clearly, the potential term (1) decouples the initial isotropic oscillator in the anisotropic
one with the frequencies ω± = √

ω2 ± �ω2. The second part of the deformation term given
by (3) has no such simple explanation. After the transformation from the initial system to the
Kepler-like one it results in the linear potential.

Remark 1. Assuming that zα are real coordinates we arrive at the two-dimensional anisotropic
inharmonic oscillator. More generally, for α, β = 1, . . . , N � 2, and σ̂3 is N ×N -dimensional
Hermitian matrix which obeys the condition σ̂ 2

3 = 1 we get an integrable anisotropic 4N -
(2N -)dimensional inharmonic oscillator, when zα are complex (real) coordinates.

Let us perform the Kustaanheimo–Stiefel transformation for the present system. For this
purpose we have to reduce the system under consideration by the Hamiltonian action of the
U(1) group given by generator (11) and choose the U(1)-invariant coordinates [4, 7]

q = zσz̄, p = zσπ + π̄σz̄

2(zz̄)
. (18)

As a result, the reduced Poisson brackets read

{pi, q
j } = δ

j

i , {pi, pj } = s
εijkq

k

q3
, q = |q|, (19)

where s is the value of the generator (11), J = s. The oscillator’s energy surface,Haosc = Eaosc,
can be presented in the form

HMICZ = EMICZ (20)

where

HMICZ = p2

2
+

s2

2q2
− γ

q
+

�ω2

2

q3

q
+ εelq3 (21)

and

γ = Eaosc

2
, EMICZ = −ω2

2
. (22)

It is seen that (19) and (21) define the MICZ-Kepler system with the additional potential (2)
in the presence of a constant electric field pointed along the x3-axes. For the completeness,
let us write the constants of motion of the constructed system by reducing the constants of

4
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motion of the four-dimensional oscillator. The J3 results in the corresponding component of
angular momentum,

J = n3J, J = p × q + s
q
q

. (23)

The reduced generator A looks as follows:

A = n3A +
εel

2
(n3 × q)2 + �ω2 (n3 × q)2

q
, (24)

where

A = p × J + γ
q
q

(25)

is the Runge–Lenz vector of the unperturbed MICZ-Kepler system.
Now, we are ready to consider similar oscillator-like systems on the four-dimensional

sphere and the pseudosphere, as well as the Kepler-like systems on the three-dimensional
pseudosphere.

3. Anisotropic inharmonic Higgs oscillator

For the description of the four-dimensional Higgs oscillator it is convenient to introduce
the (complex) projective coordinates connected with the Cartesian coordinates of the five-
dimensional ambient space as follows:

xα ≡ xα + ıxα+2 = R0
2zα

1 + εzz̄
, x0 = R0

1 − εzz̄

1 + εzz̄
, α = 1, 2. (26)

Here xx̄ + εx2
0 = R2

0, with ε = 1 for the sphere and ε = −1 for the two-sheet hyperboloid. In
these coordinates the metric of (pseudo)sphere reads

ds2 = 4R2
0 dz dz̄

(1 + εzz̄)2
, (27)

where |z| ∈ [0,∞) for the sphere and |z| ∈ [0, 1) for the pseudosphere. In the limit
R0 → ∞ the lower hemisphere (the lower sheet of the hyperboloid) converts into a whole
two-dimensional plane.

Now, defining the canonical Poisson brackets (9), we can represent the Hamiltonian of
the four-dimensional Higgs oscillator as follows:

Hε
0 = (1 + εzz̄)2ππ̄

2R2
0

+
2ω2R2

0zz̄

(1 − εzz̄)2
. (28)

The symmetries of (pseudo)sphere are defined by generators (11)–(13), and

Jα = (1 − εzz̄)πα + ε(πz + π̄ z̄)z̄α, Jᾱ = J̄α. (29)

It is clear that generators (11)–(13) define the rotational symmetry algebra of the Higgs
oscillator, while generators (29) define the translations on the(pseudo)sphere. By their use
one can construct the generators of hidden symmetries of the Higgs oscillator,

Aαβ = JαJβ

2R2
0

+ 2ω2R2
0

z̄αz̄β

(1 − εzz̄)2
, Aᾱβ̄ = Āαβ (30)

and

A = (JσJ̄ )

2R2
0

+ 2ω2R2
0

(zσz̄)

(1 − εzz̄)2
. (31)

5



J. Phys. A: Math. Theor. 41 (2008) 155203 A Nersessian and V Yeghikyan

Let us construct the integrable (pseudo)spherical analog of the anisotropic inharmonic
oscillator (16). We consider the class of Hamiltonians

Hε
aosc = Hε

0 + (zσ3z̄)�(zz̄), (32)

which besides the symmetries defined by the generators J and J3
({

J,Hε
aosc

} = {
J3,Hε

aosc

} =
0
)
, possesses the hidden symmetry defined by the constant of motion

A = A3 + g(zz̄) + (zσ̂3z̄)
2h(zz̄). (33)

Here �(zz̄), g(zz̄) and h(zz̄) are some unknown functions, and A3 is the third component
of (31). It is clear that {J,A} = {J3, A} = 0 for any choice of, �, g, h functions. Hence,
requiring A to be the constant of motion, we shall get the integrable anisotropic generalization
of the Higgs oscillator.

Surprisingly, from this requirement (that A is the constant of motion,
{
A,Hε

aosc

} = 0) we
uniquely (up to constant parameters) define the functions �, g, h. Namely, the function � in
(32) reads

� ≡ 2R2
0�ω2

(1 + εzz̄)2
+

8εelR
4
0

(1 − (zz̄)2)2

(1 + (zz̄)2)(zz̄)

(1 − εzz̄)2
(34)

and the hidden symmetry generator looks as follows,

A = A3 +
2R2

0�ω2zz̄

(1 + εzz̄)2
+ 4εelR

4
0

(
(zz̄)2

(1 − (zz̄)2)2
+

(zσ̂3z̄)
2

(1 − εzz̄)4

)
. (35)

One can easily see that the constructed system results in (16) results in the limit R0 → ∞.
Hence, we have got the well-defined (pseudo)spherical generalization of (16).
In coordinates (26) the potential of the constructed system looks much simpler. The

potential of (isotropic) Higgs reads

UHiggs = ω2R2
0

2

R2
0 − x2

0

x2
0

, (36)

while the anisotropy terms are defined by the expression

UAI =
(

�ω2

2
+ εεelR

2
0

(
R4

0 − x4
0

)
x4

0

)
xσ̂3x̄. (37)

4. MICZ-Kepler-like systems on pseudosphere

In this section performing Kustaanheimo–Stiefel transformation on the constructed system we
shall get the pseudospherical analog of the Hamiltonian (21).1 This procedure is completely
similar to those of the isotropic Higgs oscillator [16].

First, we must reduce the system by the Hamiltonian action of the generator (11).
Choosing the functions (18) as the reduced coordinates and fixing the level surface J = s, we
shall get the six-dimensional phase space equipped by the Poisson brackets (19). Then we fix
the energy surface of the oscillator on the (pseudo)sphere, Hε

aosc = Eaosc, and multiply it by
(1 − εq2)2/q2. As a result, the energy surface of the reduced system takes the form

H−
AMICZ = E−

AMICZ, (38)

1 Let us recall that both spherical and pseudospherical Higgs oscillators result, upon Kustaanheimo–Stieffel
transformation, in the pseudospherical MICZ-Kepler system [16].

6
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where

H−
AMICZ = (1 − q2)2

8r2
0

(
p2 +

s2

q2

)
− γ

2r0

1 + q2

q

+
�ω2

2

(
1 − εq

1 + εq

)2
q3

q
+ 2εelr0

1 + q2

1 − q2

q3

1 − q2
, (39)

r0 = R2
0, γ = Eaosc

2
, E−

AMICZ = −ω2

2
+ ε

Eaosc

2r0
. (40)

Interpreting q as the stereographic coordinates of the three-dimensional pseudosphere

x = r0
2q

1 − q2
, x0 = r0

1 + q2

1 − q2
, (41)

we conclude that (39) defines the pseudospherical analog of the MICZ-Kepler system with
linear and cos θ potential terms (21).

The constants of motion of the anisotropic oscillators, J3 and A yield, respectively, the
third component of angular momentum (23) and the hidden symmetry generator

A = n3A +
r0�ω2

(1 + εq)2

[
q2 − q2

3

q

]
+ 2εelr

2
0

q2 − q2
3

(1 − q2)2
(42)

where

A = T × J
2r0

+ γ
q
q

is the Runge–Lenz vector of the MICZ-Kepler system on the pseudosphere, J is the generator
of the rotational momentum defined by expression (23) and

T = (1 + q2)p − 2(qp)q (43)

is the translation generator.
This term also looks simple in Euclidean coordinates of ambient space

VAI = �ω2

2

(
x3

|x| + ε
x0x3

r2
0

)
+ εel

x0x3

r0
. (44)

Let us note that the term proportional to �ω2 depends on ε, i.e., formally, the anisotropic terms
yield different pseudospherical generalizations of potential (2). However, this difference is
rather trivial, it is easy to observe that one potential transforms into the other one upon spatial
reflection.

The present Kepler-like system admits the separation of variables into the following
generalization of parabolic coordinates (compare with [19]):

q1 + iq2 = 2
√

ξη

r0 +

√√
(r2

0 +ξ 2)(r2
0 +η2)+ξη+r2

0√
2

eıϕ,

(45)

q3 =
√

2

√√(
r2

0 + ξ 2
) (

r2
0 + η2

) − ξη − r2
0

r0 +

√√
(r2

0 +ξ 2)(r2
0 +η2)+ξη+r2

0√
2

.

In these coordinates the metric reads

ds2 = r2
0
ξ + η

4

(
dξ 2

ξ
(
r2

0 + ξ 2
) +

dη2

η
(
r2

0 + η2
))

+ ξη dϕ2. (46)

7
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Passing to the canonical momenta, one can represent the Hamiltonian (39) as follows:

H−
MICZ = 2ξ

(
r2

0 + ξ 2
)

r2
0 (ξ + η)

p2
ξ +

2η
(
r2

0 + η2
)

r2
0 (ξ + η)

p2
η +

1

ξη

p2
ϕ

2

+
spϕ + s2

r0(ξ + η)

⎛⎝ r0 +
√

r2
0 + ξ 2

ξ
+

r0 −
√

r2
0 + η2

η

⎞⎠
+

�ω2r0

2

ξ

√
r2

0 + ξ 2 − η

√
r2

0 + η2 + ξ 2 − η2

ξ + η

− γ

r0

√
r2

0 + ξ 2 +
√

r2
0 + η2

ξ + η
+ εel

ξ − η

2
. (47)

So, the corresponding generating function has to have the additive form S = EAMICZt + pϕϕ +
S1(ξ) + S2(η). Replacing pξ and pη by dS1(ξ)/dξ and dS2(η)/dη respectively, we obtain the
following ordinary differential equations:

2ξ
(
r2

0 + ξ 2
)

r2
0

(
dS1(ξ)

dξ

)2

+ (spϕ + s2)
r0 +

√
r2

0 + ξ 2

r0ξ

+
�ω2r0

2

(
ξ

√
r2

0 + ξ 2 + ξ 2
) − γ

r0

√
r2

0 + ξ 2 + εelξ
2 − EAMICZξ +

p2
ϕ

ξ
= β (48)

2η(r2
0 + η2)

r2
0

(
dS2(η)

dη

)2

+ (spϕ + s2)
r0 −

√
r2

0 + η2

r0η
− �ω2r0

2

(
η

√
r2

0 + η2 + η2
)

− γ

r0

√
r2

0 + η2 − εelη
2 − EAMICZη +

p2
ϕ

η
= −β (49)

From these equations we can immediately find the explicit expression for the generating
function. We have separated the variables for the pseudospherical generalization of the
Coulomb system into linear and cos θ potentials.

The above equations look much simpler in the new coordinates (χ, ζ ), where ξ =
r0 sinh χ, η = r0 sinh ζ :(

dS1(χ)

dχ

)2

= EAMICZ

2
− �ω2r4

0

2
(cosh χ + sinh χ) +

(
γ r0

2
− s2 − spϕ

)
coth χ

− εelr
3
0

2
sinh χ − p2

ϕ

2 sinh2 χ
+

βr0 − s2 − spϕ

2 sinh χ
, (50)(

dS2(ζ )

dζ

)2

= EAMICZ

2
+

�ω2r4
0

2
(cosh ζ + sinh ζ ) +

(
γ r0

2
+ s2 + spϕ

)
coth ζ

+
εelr

3
0

2
sinh ζ − p2

ϕ

2 sinh2 ζ
− βr0 + s2 + spϕ

2 sinh ζ
. (51)

Remark 2. In the same manner the 2p-dimensional anisotropic inharmonic oscillator on
the (pseudo)sphere can be connected to the (p + 1)-dimensional Kepler-like systems on the
pseudosphere also for p = 1, 4. For p = 1 we should just assume that zα are real coordinates.
In this case we should not perform any reduction at the classical level (in the quantum case we
have to reduce the initial system by the discreet Z2 group action, see [6]). For p = 4 we have

8
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to assume that zα are quaternionic coordinates (equivalently that zα are complex coordinates
with α = 1, . . . , 4). In contrast to p = 1, 2 cases, we should reduce the initial system by the
SU(2) group action [8].

Remark 3. The planar (MICZ)-Kepler system with a linear potential can be obtained as
a limiting case of the two-center (MICZ-) Kepler system, when one of the forced centers
is placed at infinity (see, e.g., [1]). The two-center (pseudo)spherical Kepler system is the
integrable system as well [15]. However, the presented pseudospherical generalization of
the (MICZ-)Kepler system with linear potential could not be obtained from the two-center
pseudospherical Kepler system: it can easily be checked that in contrast to the pseudospherical
Kepler potential, it does not obey the corresponding Laplas equation.

5. Transition to the sphere

To get the spherical counterpart of the Hamiltonian (21), let us perform its ‘Wick rotation’

q → ıq, p → −ıp, r0 → −ır0.

This transformation yields the following system:

H+ = H+
0 + 2εelr0

1 − q2

1 + q2

q3

1 + q2
+

�ω2

2

(
1 − iεq

1 + iεq

)2
q3

q
, (52)

where

H+
0 = (1 + q2)2

8r2
0

(
p2 +

s2

q2

)2

− γ
1 − q2

2r0q
(53)

is the Hamiltonian of the unperturbed MICZ-Kepler system on the sphere. The hidden
symmetry of this system is defined by the expression

A = n3A + �ω2

[
q2 − q2

3

(1 + iεq)2q

]
+ 2εelr

2
0

q2 − q2
3

(1 + q2)2
, (54)

where

A = J × T + γ
q
q

(55)

is the Runge–Lenz vector of the spherical MICZ-Kepler system, with the angular momentum
J given by (23) and with the translation generator

T = (1 − q2)p + 2(qp)q. (56)

One can see that due to the last term in (52) this Hamiltonian is a complex one. Taking its real
part we shall get the integrable spherical analog of the MICZ-Kepler system with linear and
cos θ potentials,

H+
MICZ = H+

0 +
�ω2

2

1 − 6q2 + q4

1 + q2

q3

q
+ 2εel

1 − q2

1 + q2

q3

1 + q2
. (57)

The generator of its hidden symmetry is also given by the real part of (54)

A = n3A +

[
�ω2r0

1 − q2

q
+

εel

2

]
q2 − q2

3

(1 + q2)2
. (58)

In terms of ambient space R
4 the anisotropy term is defined by expression (37).
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Remark 4. It is clear from our consideration that the addition to the constructed system of
the potential

c0Im

(
1 − iεq

1 + iεq

)2
q3

q
(59)

will also preserve the integrability. The hidden symmetry generator will be given by the
expression

A + c0Im
�ω2

2(1 + iεq)2

[
q2 − q2

3

q

]
. (60)

However, it is easy to see that this additional potential coincides with (52), i.e. we do not get
anything new in this way.

6. Summary and conclusion

Let us briefly summarize our results.

• We presented the integrable (pseudo)spherical generalization of anisotropic oscillator
which can be considered as a deformation of the well-known Higgs oscillator. This
integrable deformation is given by potentials (5) and (6). The first potential can be viewed
as the (pseudo)spherical analog of the anisotropic oscillator potential (1), and the second
one is the (pseudospherical) analog of the inharmonic potential (3).

• Performing the Kustaanheimo transformation of these systems, we constructed the
integrable spherical analog of the (three-dimensional) MICZ-Kepler system with linear
and cos θ potentials. We found the spherical analog of the latter system as well. The
(pseudo)spherical analog of the linear (Stark) potential is given by the first term in (7),
and that of the cos θ potential (2) is given by the second term in (7).

We proved the integrability of these systems postponing the study of its classical and quantum-
mechanical solutions. The computation of the quantum-mechanical spectrum of these systems,
and, consequently, the clarification of the impact of the space curvature on the Stark effect
is a problem of special interest especially an interesting problem from the viewpoint of the
mesoscopic physics and the cosmology, as well. Let us note that even in the flat space the
presence of the Dirac monopole leads to qualitative changes of the properties of the Stark
effect [20]. There is no doubt that similar phenomena will appear in the Stark effect on the
curved space. Taking into account the conclusions of recent papers [10, 11], we expect that
one can preserve the integrability of the proposed system, introducing the constant magnetic
field and the appropriate potential term. In this case we shall have at hands the integrable
system in the parallel ‘homogeneous’ electric and magnetic fields. The importance of such a
system is obvious.
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